Measurements of vector meson decays in nuclear matter at KEK–PS

Satoshi Yokkaichi, RIKEN
for KEK–PS E325 collaboration

- vector meson modification & chiral symmetry
- performed experiment
- observed invariant mass spectra
- discussion
Chiral symmetry restoration in dense matter

- In hot/dense matter, chiral symmetry is expected to restore
 - hadron modification is expected in such matter
- quark–antiquark condensate (order parameter) is predicted
 ~2/3 even at the normal nuclear density
 - Achievable at KEK–PS, not RHIC

- Various theoretical predictions of vector meson (mass/width)
 modification in dense medium....
 - Brown, Rho (’91), Hatsuda, Lee (’92), Klingle, Keiser, Weise (’97), Muroya, Nakamura, Nonaka (’03)....
Hatsuda and Lee, 92, 95
mass decreasing
~16% for ρ/ω
~2–4% for ϕ
at the normal nuclear density

Muroya, Nakamura, Nonaka, 03

Klinge, Keiser, Weise, 97
Invariant mass spectra in e^+e^- channel

- smaller FSI in e^+e^- decay channel
- double peak or tail–like structure
 - second peak is made by inside–nucleus decay (modified meson)
- comparison of ϕ and ρ
 - ϕ (1020): narrow width
 - smaller decay prob. inside nuclei
 - smaller production CS
 - ρ (770) & ω (783)
 - larger production CS
 - larger decay prob. inside nuclei
 - cannot distinguish ρ & ω in e^+e^-

KEK WS on Nuclear Chiral Dynamics, 04Mar20 S.Yokkaichi
Experiment KEK–PS E325

- 12GeV p+A → ρ/ω/φ +X, (ρ/ω/φ → e^+e^−, φ→K^+K^-)

- Experimental key issues:
 - Very thin target to suppress the conversion electron background (typ. 0.1% interaction/0.2% radiation length of C)
 - To compensate the thin target, High intensity proton beam to collect high statistics (typ. 10^9 ppp → 10^6Hz interaction)
 - Detect slowly moving mesons, which have larger probability decaying inside nuclei (1<βγ<3)

Collaboration

(Kyoto Univ., RIKEN, KEK, CNS–U.Tokyo, ICEPP–U.Tokyo, Tohoku–Univ.)
• KEK–PS EP1–B primary beam line
• 1996 const. start
• ’97 data taking start
• ’98 ee data is published
 – PRL86(01)5019
• 99,00,01,02,...
• ’02 completed
- **Spectrometer Magnet**
 - 0.71T at the center
 - 0.81Tm in integral

- **Targets**
 - at the center of the Magnet
 - C & Cu are used typically
 - very thin: ~0.1% interaction length

- **Primary proton beam**
 - 12.9 GeV/c
 - ~1x10⁹ in 2sec duration, 4sec cycle
Electron ID counters
 Gas Cherenkov & Lead Glass EMC
 total 3×10^{-4} π rejection
 with 78% e efficiency
 in two-stage operation

Tracker
 Three Drift Chambers
• Typical e^+e^- Event
 - **blue**: electron
 - **red**: other
 - invariant mass of electron pair is calculated
Observed e^+e^- invariant mass spectra

- from 2002 run data (~70% of total data)
- C & Cu target
- clear resonance peaks
- $m<0.2$ GeV is suppressed by detector acceptance
- acceptance uncorrected
Fitting with known sources

- Hadronic sources of e^+e^-:
 - $\rho/\omega/\phi \rightarrow e^+e^-$, $\omega \rightarrow \pi^0e^+e^-$, $\eta \rightarrow \gamma e^+e^-$
 - simple Breit–Wigner shape (no modification is assumed)
 - Geant4 detector simulation (energy loss of e^+/e^- in detector, acceptance, etc.)

- Combinatorial background: event mixing method

- ... relative abundance of these components are determined by fit

- **excess** at the low–mass side of ω (0.6–0.75 GeV)
- ρ–meson component seems to be **vanished**!
Fitting results (BKG subtracted)

\[\frac{\rho}{\omega} = 0.0 + 0.01 \text{(stat.)} + 0.2 \text{(sys.)}, \quad 0.0 + 0.05 \text{(stat.)} + 0.5 \text{(sys.)} \]

- However, \(\frac{\rho}{\omega} \sim 1 \) in former experiment (p+p, 1974)
 suggests the excess is from modified \(\rho \) mesons?

KEK WS on Nuclear Chiral Dynamics, 04Mar20 S.Yokkaichi
Discussion: Toy model including modification

- Assumptions to include the nuclear size effect in the fitting shape
 - nuclear density distribution: *Woods–Saxon* form
 - meson production point: incident *surface* of nuclei
 - fly through the nucleus, decay with modified mass if the decay point is inside nuclei
 -
 - modification as: \(\frac{m^*}{m_0} = 1 - 0.16 \frac{\rho^*}{\rho_0} \)
 (Hatsuda & Lee, ’92,’95)
 - (width modification & momentum dependence of modification are not taken into account)

- \(\frac{\rho}{\omega} \) ratio is fixed to unity as measured in former exp.
Fitting results by the toy model

- the tendency of the data are reproduced qualitatively by the model
\textbf{e}^{+}\textbf{e}^{-} \text{ spectra of } \phi \text{ meson }

\begin{itemize}
\item all statistics for \(\phi \) meson... \(\sim 1000 \phi \) s for each target.
\end{itemize}

\textbf{work in progress}
Summary

- KEK–PS E325 measured the $e^+e^-(&K^+K^-)$ decay of slowly moving vector mesons in nuclei produced by 12GeV proton beam, to explore the chiral symmetry restoration at the normal nuclear density.

- Observed e^+e^- invariant mass spectra have excesses below the ω meson peak, which cannot be explained by known hadronic sources in normal (unmodified) shape. These suggest modification of (at least) ρ meson.

- Simple model calculation including predicted modification reproduces the observed spectra qualitatively.

- Analysis on ϕ meson is also on going...