At first, the fit was done for all mass region, but the fit could not reproduce our data. The fitting χ^2/dof was 371/162 and 316/162 for the carbon and copper target, respectively. Then we made the fit for the data excluding the low-mass side of ω peak has been observed.

The tendency of the excess for C and Cu are well reproduced by the model including the mass modification.

ρ/ω interference

KEK PS-E325 experiment measured e^+e^- pairs in 12GeV p+Au reactions to investigate invariant mass of vector mesons decaying in nuclear matter.

We have observed the excess over the known hadronic sources at low-mass side of ω. Obtained ρ/ω ratio indicates that the excess is mainly due to the modification of ρ mesons.

ρ/ω interference did not explain our data.

Model calculation based on the mass modification reproduced the tendency of the data. The fit result shows that the mass of ρ/ω meson decreases 9% at normal nuclear density.