Initial mass measurement of ²⁵⁸Db by decay-correlated mass spectroscopy

P. Schury,*¹ T. Niwase,*^{1,*2,*3} M. Wada,*¹ P. Brionnet,*² S. Chen,*⁴ T. Hashimoto,*⁵ H. Haba,*² Y. Hirayama,*¹ D. S. Hou,*^{6,*7,*8} S. Iimura,*^{9,*2,*1} H. Ishiyama,*² S. Ishizawa,*^{10,*2} Y. Ito,*^{11,*2,*1} D. Kaji,*² S. Kimura,*² H. Koura,*¹¹ J. J. Liu,*^{4,*1} H. Miyatake,*¹ J. -Y. Moon,*⁵ K. Morimoto,*² K. Morita,*^{12,*13} D. Nagae,*¹³ M. Rosenbusch,*¹ A. Takamine,*² Y. X. Watanabe,*¹ H. Wollnik,*¹⁴ W. Xian,*^{4,*1} and S. X. Yan*¹⁵

We present the first direct measurement of the atomic mass of the superheavy nuclide $^{258}\mathrm{Db}.$ Atoms of $^{257}\mathrm{Db}$ (Z = 105) were produced online at the RIKEN Nishina Center for Accelerator-Based Science using the fusionevaporation reaction 208 Pb $(^{51}$ V $, 1n)^{258}$ Db. filled recoil ion separator GARIS-II was used to suppress both the unreacted primary beam and some transfer products, prior to delivering the energetic beam of ²⁵⁸Db ions to a helium gas-filled ion stopping cell wherein they were thermalized. Thermalized ²⁵⁸Db²⁺ ions were then transferred to a multi-reflection time-of-flight mass spectrograph (MRTOF) for mass analysis. An alpha particle detector embedded in the ion time-of-flight detector allowed disambiguation of the rare ²⁵⁸Db²⁺ time-of-flight detection events from background by means of correlation with characteristic α -decays. The extreme sensitivity of this technique¹⁾ allowed a precision atomic mass determination from 22 decay-correlated events.

This measurement was made simultaneously with $^{257}\mathrm{Db}$ while testing PbS targets produced via sputtering. The targets were capable of withstanding 2 particle $\mu\mathrm{A}$ primary beam without degradation in their performance. The pulsed deflector²) inside the MRTOF was operated to allow passage of A/q=128.5 and A/q=129 while rejecting transfer products such as $^{211}\mathrm{Po}$ that had previously produced spurious decay correlations. The observed rate of $^{258}\mathrm{Db}$ relative to $^{257}\mathrm{Db}$ is within expectations based on the excitation functions.³)

Using a similar correlation method as employed for $^{257}\mathrm{Db},^{4)}$ extended to encompass spontaneous fission events, a mass was determined for the detected ion in each decay-correlated event. A histogram of the masses is shown in Fig. 1. Based on the mass resolving power seen for $^{257}\mathrm{Db}^{2+},^{5)}$ there appears to be an excess of

- *1 Wako Nuclear Science Center (WNSC), IPNS, KEK
- *2 RIKEN Nishina Center
- *3 Department of Physics, Kyushu University
- *4 Department of Physics, University of Hong Kong
- *5 Institute for Basic Science
- *6 Institute of Modern Physics, Chinese Academy of Sciences
- *7 University of Chinese Academy of Sciences
- *8 School of Nuclear Science and Technology, Lanzhou University
- *9 Department of Physics, Osaka University
- *¹⁰ Graduate School of Science and Engineering, Yamagata University
- *¹¹ Advanced Science Research Center, Japan Atomic Energy Agency
- *12 Department of Physics, Kyushu University
- *13 Research Center for SuperHeavy Elements, Kyushu University
- *14 New Mexico State University
- *¹⁵ Institute of Mass Spectrometer and Atmospheric Environment, Jinan University

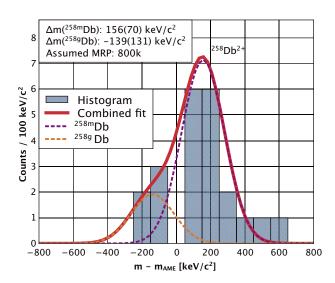


Fig. 1. Histograms of evaluated atomic masses for ions detected with subsequent α -decays consistent with $^{258}\mathrm{Db},$ $^{254}\mathrm{Lr},$ or $^{250}\mathrm{Md},$ $^{258}\mathrm{Rf},$ and spontaneous fission. The two-peak structure could indicate the isomeric excitation exceeds NUBASE estimates. $^{6)}$

events in the low-mass tail. Applying two-peak fitting with fixed resolution results in a good reproduction of the observed distribution. Presuming this is not a statistical anomaly, it would indicate the isomeric excitation to be 300 (150) keV, a significant deviation from the α -decay derived NUBASE value⁶ of 53 (14) keV.

A further followup effort to gather more data in order to better determine the isomeric excitation is planned for FY2022. However, due to the small differences between α -particle energies emitted from the two states, determination of the state ordering via precision decay-correlated mass spectroscopy will require a considerably improved detector station. Such a detector station is presently in the initial design phase.

References

- T. Niwase et al., Nucl. Instrum. Methods Phys. Res. A 953, 163198 (2020).
- 2) M. Rosenbusch *et al.*, submitted to Nucl. Instrum. Methods Phys. Res. A.
- 3) J. M. Gates et al., Phys. Rev. C 78, 034604 (2008).
- 4) P. Schury et al., Phys. Rev. C 104, L021304 (2021).
- 5) P. Schury et al., in this report.
- 6) M. Wang et al., Chin. J. Phys. C, ${\bf 45}$ 030001 (2021).