Digital Signal Processing in Nuclear Physics

Riken, July 28, 2003

Michael Momayezi <u>www.xia.com</u> momayezi@xia.com

Akinori Yamaguchi, ayama@nikiglass.com

© XIA, July 2003 X-Ray Instrumentation Associates, 8450 Central Ave, Newark, CA 94560, USA, Phone: 510-494-9020, FAX: 510-494-9040 web: <u>www.xia.com</u>, email: sales@xia.com

Outline

The Goal

- Improve detector performance through better data acquisition.
- More intelligent, more compact, cheaper data acquisition.

The Technology

- High-speed digitizers, real time digital signal processing, algorithm-driven intelligent front-ends.

The Business Model

- Combine do-it-yourself with standard software

Old vs New

Old: Dedicated electronics for each function

- Measurement: Shaper, Pulse height analyser, TDC
- Triggering: Discriminators, gate generators
- Everything is carefully tuned manually and hardwired.

New: Intelligent front-end measures energy and time, triggers and records the pulse shape. No manual adjustments.

A Decay Experiment

The New Way

Every channel provides complete signal measurement, including:

- Energy
- Time
- Trigger
- Pulse shape

All Parameters are set by Computer / User All Algorithms are set by Computer / User

The Same Experiment

Pulse Shape

Analog vs Digital

Specialized Analog Electronics:

- Shapers and PHA for energy measurement.
- Discriminators for triggering
- TDCs for time measurement.

Unspecialized Digital System:

- High Speed digitizers preserves waveform, and maximum information.
- Mathematical algorithms determine energy, timing, triggering, pileup inspection, etc.

The Front End

64k MCA Energy: HP-Ge, Scintillator, CdZnTe. Time: timestamps in 10ns .. 25ns intervals t = 0.5ns(fwhm)Leading Edge (CFD) Trigger: Waveform: 512 .. 4192 samples 40MSPS .. 100MSPS 12-bit to 14-bit ADCs

Building Blocks

Division of labor:ADC: 12-bit 40MSPS to 14-bit 100MSPSFPGA: Real-time measuring, Energy, Time, Trigger, Pulse Shape.DSP: Event-by-event reconstruction and storage.

The Pixie Series

Multi-channel coincidence ã-ray spectrometers measure:

- Energy and Time
- Provide triggering using hit patterns, multiplicity etc.
- Acquire digitized waveforms
- Perform on-line pulse shape analysis
- Require no auxiliary electronics

CompactPCI environment for high speed, low cost.

Many vendors provide instrumentation cards, and powerful embedded computers / DSPs.

Pixie 4-Channel Spectrometer

Highlights:	ADC: 14-bit, 75MSPS;	
Data movement:	MCA: 109Mbyte/s, List mode: 40Mbyte	/s;
Available:	Now	

Pixie 16-Channel Spectrometer

Data movement: MCA: 109Mbyte/s, List mode: 109Mbyte/s;

Target cost:\$500 to \$1,000/channel

Software

Traditional hardware has no software.

XIA provides device drivers and complete front-end data acquisition software. No programming necessary to get started. Data go to hard disk – Ready for your analysis.

Use device drivers to integrate XIA into your Data Acquisition System.

Users can add to the software running on the DSP via user hook functions.

Business Models

Standard Usage

- Off-the-shelf Hardware and Software combination
- Application specific code for a fee
- Advanced R&D Usage
 - Off-the-shelf Hardware and Software combination
 - Users can add signal processing code
 - Software development contract
- Large Scale Applications
 - Dedicated Hardware and Basic Software

Open Source contract: Users create their own code

Experience

XIA has the experience and the understanding necessary to make your experiments fly.

- We employ eleven personnel with a PhD or B.S. in physics, nuclear physics and engineering.
- We have instrumented MiniBall, a large European gamma-ray detector array.
- We have collaborated with the ORNL-Warsaw group who discovered the 2-proton emission from the ground state of Fe-45.

Conclusion

All physics experiments are special.

XIA provides fully customizable front-end data acquisition modules.

XIA provides complete software solutions for its front-ends.

Set up simple experiments within days. No programming necessary.

XIA offers a low-risk path to develop large-scale applications.

